Existence of infinitely many solutions of nonlinear fourth-order discrete boundary value problems
نویسندگان
چکیده
Abstract The fourth-order discrete Dirichlet boundary value problem is also a elastic beam problem. In this paper, the existence of infinitely many solutions to investigated through critical point theory. By an important inequality we established and oscillatory behavior f either near origin or at infinity, obtain solutions, which converge zero unbounded. end, two examples are presented illustrate our results.
منابع مشابه
Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملNON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS
We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...
متن کاملExistence and Multiplicity of Positive Solutions of a Nonlinear Discrete Fourth-Order Boundary Value Problem
and Applied Analysis 3 Ma and Xu 15 also applied the fixed point theorem in cones to obtain some results on the existence of generalized positive solutions. It is the purpose of this paper to show some new results on the existence and multiplicity of generalized positive solutions of 1.4 , 1.8 by Dancer’s global bifurcation theorem. To wit, we get the following. Theorem 1.3. Let h : 2 → 0,∞ , f...
متن کاملexistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
in this work, by employing the krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime...
متن کاملexistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
in this work, by employing the krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2022
ISSN: ['1687-2770', '1687-2762']
DOI: https://doi.org/10.1186/s13661-022-01640-y